Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Oleo Sci ; 73(4): 467-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556281

RESUMO

Rice bran (RB) and rice bran oil (RBO) are exploring as prominent food component worldwide and their compositional variation is being varied among the world due to regional and production process. In this study, Fermented Rice Bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus and Bifidobacterium bifidum) at 125×10 5 spore g -1 of rice bran, and investigated to evaluate nutritional quality. The Crude Rice Bran Oil (CRBO) was extracted from RB and its quality was also investigated compared to market available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (Threonine, valine, leucine, lysine, histidine and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, serine and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00 mg/g) were found in CRBO compared to MRBO (ranging 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% were found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%) respectively. The physiochemical parameters (density, refractive index, iodine value) were found satisfactory in all sample except acid value and peroxide value higher in CRBO. Heavy metal concentration was found within an acceptable range in both CRBO and MRBO. Thus FRB and RBO could be value added food supplement for human health.


Assuntos
Antioxidantes , Ácidos Graxos Insaturados , Humanos , Óleo de Farelo de Arroz/química , Ácidos Graxos Insaturados/análise , Antioxidantes/análise , Vitamina E , Fenóis
2.
Funct Integr Genomics ; 23(2): 150, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156920

RESUMO

In rice (Oryza sativa L.), rice bran contains valuable nutritional constituents, such as high unsaturated fat content, tocotrienols, inositol, γ-oryzanol, and phytosterols, all of which are of nutritional and pharmaceuticals interest. There is now a rising market demand for rice bran oil, which makes research into their content and fatty acid profile an area of interest. As it is evident that lipid content has a substantial impact on the eating, cooking, and storage quality of rice, an understanding of the genetic mechanisms that determine oil content in rice is of great importance, equal to that of rice quality. Therefore, in this study, we performed a genome-wide association study on the composition and oil concentration of 161 Vietnamese rice varieties. Five categories of fatty acids in rice bran were discovered and the bran oil concentration profile in different rice accessions was identified. We also identified 229 important markers related to the fatty acid composition of bran oil, distributed mainly on chromosomes 1 and 7. Seven quantitative trait loci and five potential genes related to unsaturated fatty acid content were detected, including OsKASI, OsFAD, OsARF, OsGAPDH, and OsMADS29. These results provide insights into the genetic basis of rice bran oil composition, which is pivotal to the metabolic engineering of rice plants with desirable bran oil content through candidate genes selection.


Assuntos
Ácidos Graxos , Oryza , Óleo de Farelo de Arroz , Ácidos Graxos/química , Estudo de Associação Genômica Ampla , Oryza/genética , Locos de Características Quantitativas , Óleo de Farelo de Arroz/química
3.
Food Res Int ; 164: 112457, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738012

RESUMO

The isolated plant oil bodies (OBs) have shown promising applications as natural pre-emulsified O/W emulsions. Rice bran OBs can be used as a new type plant-based resource with superior fatty acids composition and abundant γ-oryzanol. This paper investigated the method of extracting structurally intact and stable rice bran OBs. Due to the adequate steric hindrance and electrostatic repulsion effects, rice bran OBs extracted by NaHCO3 medium had smaller particle size, better physical stability, and natural structure. The protein profile of NaHCO3-extracted rice bran OBs showed oleosin-L and oleosin-H, while exogenous proteins in PBS and enzyme-assisted- extracted rice bran OBs could interact with interfacial proteins through hydrophobic forces to aggregate adjacent OBs, further remodeling the OBs interface. It was also found that the small-sized rice bran OBs could adsorb on the interface of the larger-sized rice bran OBs like Pickering stabilizers. Rice bran OBs exhibited pseudoplastic fluids characteristic, but underwent a transition from solid-like to liquid-like behavior depending on the extraction method. The disorder of NaHCO3-extracted rice bran OBs protein molecules increased their surface hydrophobicity. The random coil structure favored more proteins adsorption at the interface of rice bran OBs extracted by PBS. Enzyme-assisted extraction of rice bran OBs had the highest content of ß-sheet structure, which facilitated the stretching and aggregation of protein spatial structure. It was also confirmed the hydrogen bonding and hydrophobic interaction between the triacylglycerol or phospholipid and proteins molecules, and the membrane compositions of rice bran OBs differed between extraction methods.


Assuntos
Óleos de Plantas , Óleo de Farelo de Arroz/química , Emulsões/química , Óleos de Plantas/química , Tamanho da Partícula , Triglicerídeos
4.
J Oleo Sci ; 72(1): 39-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36624058

RESUMO

The objective of this study was to develop a method for isolation and purification of γ-oryzanol from hydrolyzed rice bran acid oil (RBAO) using semi-preparative chromatography by first applying silica coated-thin layer chromatography (TLC) to determine the suitable mobile phase. Subsequently, column chromatography was carried out to determine the effects of purification conditions such as the amount of and particle sizes of the sample silica gel, and elution modes, on the percentage of γ-oryzanol yield and recovery. The results from the TLC suggested that 75:25 (v/v) hexane to ethyl acetate mixture was a suitable mobile phase. The semi-chromatographic results indicated that the column containing 10 g of 25-40 µm silica gel with isocratic elution gave the highest yield (84%) of purified γ-oryzanol (> 95% purity). Further application of a step-gradient elution with 85:15 (v/v), followed by 75:25 (v/v) hexane to ethyl acetate mixture increased chromatographic resolution (Rs), resulting in enhanced separation efficiency, which in turn led to a higher yield of purified γ-oryzanol of 90%.


Assuntos
Oryza , Fenilpropionatos , Óleo de Farelo de Arroz/química , Hexanos , Sílica Gel , Fenilpropionatos/análise , Cromatografia em Camada Delgada , Oryza/química
5.
Food Chem ; 409: 135283, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36571900

RESUMO

Rice bran is a major by-product of rice processing with abundant nutrient content. Oil bodies (OBs), which are fat particles with unique physicochemical stability, are specialized organelles for the storage of oils and fats in plant tissues. In this study, we extracted OBs from rice bran, to evaluate the function of hydrophobic nutrients efficiently delivered by OBs. The carrier system was prepared by sonicating curcumin with medium chain triglycerides (MCT) into rice bran oil bodies (RBOBs). Emulsions comprising different RBOB mass fractions were characterized. The results showed that the highest encapsulation efficiency (EE, 87.67%), optimal particle size (190 nm), and best storage stability were achieved with the 1.5 wt% RBOBs. Based on activity evaluation data, the carrier system can achieve sustained oil release in the intestine and shows high bioaccessibility (61.04%; IC50 in Caco-2 cells was 77.21 µg/mL), which is important for promoting grain by-product utilization.


Assuntos
Digestão , Excipientes , Humanos , Células CACO-2 , Óleo de Farelo de Arroz/química , Triglicerídeos
6.
Food Chem ; 404(Pt A): 134568, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36252381

RESUMO

Rice bran oil contains a significant quantity of phytosterols that have various active functions and are natural active substances beneficial to humans. It is well known that deodorization during refining affects the quality of rice bran oil. However, changes in phytosterols fraction caused by stripping with nitrogen compared to water vapor remain unexplored. We measured phytosterols in rice bran oil after deodorization with nitrogen and water vapor. The variations in sitosterol fraction, which accounts for the highest percentage of phytosterols in rice bran oil, were analyzed by Gas chromatography (GC), Fourier transform infrared spectrometer (FTIR), and Nuclear magnetic resonance (NMR). Results showed that using nitrogen as the stripping gas was more suitable for deodorization. It promoted the formation of phytosterol esters, reduced the production of phytosterol oxidation products and improved the oil quality. This study provides a theoretical basis for improving the industrial production quality of rice bran oil.


Assuntos
Fitosteróis , Esteróis , Humanos , Óleo de Farelo de Arroz/química , Vapor , Fitosteróis/análise , Nitrogênio/análise
7.
Food Chem ; 396: 133737, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870241

RESUMO

The drastic increase in the utilization and conversion of biomass has been an effect of sustainability and circular economy in the food processing sector. Rice bran wax (RBW), an intermediate by-product of rice bran oil refining industries, has been one of the underutilized waste materials. The FT-IR analysis showed that RBW contains many similar compounds to that of beeswax (BW) and carnauba wax (CW). The DSC thermographs showed melting and crystallization temperatures of RBW as 78.55 and 73.43 °C, respectively, lesser than CW and more than BW. The peak profiling of XRD diffractographs has shown full-width at half-maximum of CW and RBW as 0.61 and 0.45, respectively, indicating distortion in crystal formation. The sequential extracts of RBW in hexane, dichloromethane, and ethylacetate have shown antimicrobial activity against E. coli and S. typhi. The research provides a baseline for extraction and separation of specialty compounds from RBW for by-product utilization.


Assuntos
Escherichia coli , Oryza , Oryza/química , Compostos Fitoquímicos , Óleo de Farelo de Arroz/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Food Chem ; 393: 133440, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35701271

RESUMO

Rice bran oil (RBO) contains a variety of nutrients, but the high acid values largely hinder its processing into edible oil. Thus, the tandem continuous-flow reactors are proposed and developed for the enzymatic deacidification of RBO and simultaneous production of functional oils. The results indicate that the Candida antarctica lipase B (CALB) immobilized on the hydrophobic ordered mesoporous silicon (OMS-C18) increased 6.6 times of the catalytic activity and improved at least 20 ℃ of temperature tolerance compared to the commercial Novozym 435. The tandem continuous-flow enzymatic reactors removed 91.4% of free fatty acid and increased 9 and 12 times of phytosterol ester and diacylglycerol in RBO, respectively. Moreover, the retention rate of γ-oryzanol was at least 40% higher than that obtained by traditional alkali refining. This study provides an effective and sustainable method to continuously convert the low-value RBO into value-added products, which brings huge potential to cleaner industrial production.


Assuntos
Ácidos Graxos não Esterificados , Óleos de Plantas , Óleos de Plantas/química , Óleo de Farelo de Arroz/química , Temperatura
9.
J Oleo Sci ; 70(11): 1551-1563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34732634

RESUMO

Rice bran oil (RBO) has been demonstrated to affect complex malfunctioned conditions such as oxidative stress, hyperlipidemia, hyperglycemia, hypertension, inflammation, abnormal cell growth (cancer), ulceration, immune and cognitive modulation. This unique effect of RBO is due to the presence of well-balanced fatty acid composition and several bioactive compounds, γ- oryzanol (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesterol ferulate, and ß-sitosteryl ferulate), vitamin E (tocopherol and tocotrienol), phytosterols (ß-sitosterol, campesterol and stigmasterol) and other nutrients. The RBO composition of bioactive compounds varied geographically, thus the clear-cut mechanisms of action on complex disease cascades are still required. This review article summarized the RBO compositional profiling and compared it with other edible oils. This article also summarized Bangladesh RBO profiling and their proposed mechanism of action as well as the first line of defense in the prevention, management, and control of complex disease conditions. This review indicates how Bangladesh RBO increase their opportunity to be functional food for 21st century's ailment.


Assuntos
Análise de Alimentos , Alimento Funcional , Óleo de Farelo de Arroz/análise , Óleo de Farelo de Arroz/química , Anti-Inflamatórios , Bangladesh , Ácidos Graxos/análise , Hiperglicemia/prevenção & controle , Hiperlipidemias/prevenção & controle , Hipertensão/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/análise , Compostos Fitoquímicos/análise , Fitosteróis/análise , Óleo de Farelo de Arroz/farmacologia , Vitamina E/análise
10.
Food Chem ; 361: 130113, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062453

RESUMO

Lycopene was extracted from pink grapefruit using SC-CO2 and rice bran oil as co-solvent. Response surface methodology was employed to evaluate the individual and interactive effects of three process parameters varied at five levels i.e. pressure (250, 300, 375, 450 & 500 bar), temperature (55, 60, 70, 80 & 85 °C), and extraction time (60, 90, 135, 180 & 210 min). Single optimum point for multiple response variables was achieved at 325 bar, 64 °C, and 143 min with overall desirability of 0.92 at which 70.52 ± 3.65% (lycopene extraction efficiency) and 11154 ± 148 ppm (γ-oryzanol) were predicted. Extraction temperatures of more than 80 °C and time beyond 180 min led to the isomerization of lycopene. Lycopene storage at 3 °C, 10 °C, & 25 °C showed average k and half-life values as 0.018, 0.030, & 0.075 and 40, 23, & 9 days, respectively for first-order degradation kinetics; depicting faster degradation at higher storage temperatures.


Assuntos
Dióxido de Carbono/química , Citrus paradisi/química , Armazenamento de Alimentos , Licopeno/isolamento & purificação , Licopeno/química , Fenilpropionatos/química , Óleo de Farelo de Arroz/química , Solventes/química , Temperatura
11.
Food Chem ; 358: 129856, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933975

RESUMO

W/O/W emulsions were easily prepared by oleogelation of the oil phase using rice bran wax (RBX) and their microstructure, stability, rheology and protection of proanthocyanidins and ß-carotene were investigated. Formation of the W/O/W emulsion was confirmed using confocal laser scanning microscopy and staining of the inner aqueous phase by tartrazine. The average particle size and viscosity of the emulsion increased as the RBX concentration increased. Moreover, RBX increased the stability of the emulsion and the emulsion was the most stable when the RBX concentration was 8.0% or 10.0%. On the other hand, the W/O/W emulsions were used to simultaneously encapsulate proanthocyanidins and ß-carotene. Specifically, proanthocyanidins and ß-carotene in RBX-containing emulsions were more stable and had higher bioaccessibility than in the emulsion without RBX. Besides, both their chemical stability and bioaccessibility reached the maximum value when the RBX concentration was 8.0% or 10.0%. In summary, the optimal RBX concentration was 8.0%.


Assuntos
Emulsões/química , Proantocianidinas/química , Óleo de Farelo de Arroz/química , beta Caroteno/química , Óleo de Milho/química , Armazenamento de Alimentos , Tamanho da Partícula , Proantocianidinas/farmacocinética , Reologia , Viscosidade , Água/química , beta Caroteno/farmacocinética
12.
Molecules ; 26(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925340

RESUMO

Rice bran arabinoxylan compound (RBAC) is derived from defatted rice bran hydrolyzed with Lentinus edodes mycelial enzyme. It has been marketed as a functional food and a nutraceutical with health-promoting properties. Some research has demonstrated this rice bran derivative to be a potent immunomodulator, which also possesses anti-inflammatory, antioxidant, and anti-angiogenic properties. To date, research on RBAC has predominantly focused on its immunomodulatory action and application as a complementary therapy for cancer. Nonetheless, the clinical applications of RBAC can extend beyond cancer therapy. This article is a narrative review of the research on the potential benefits of RBAC for cancer and other health conditions based on the available literature. RBAC research has shown it to be useful as a complementary treatment for cancer and human immunodeficiency virus infection. It can positively modulate serum glucose, lipid and protein metabolism in diabetic patients. Additionally, RBAC has been shown to ameliorate irritable bowel syndrome and protect against liver injury caused by hepatitis or nonalcoholic fatty liver disease. It can potentially ease symptoms in chronic fatigue syndrome and prevent the common cold. RBAC is safe to consume and has no known side effects at the typical dosage of 2-3 g/day. Nevertheless, further research in both basic studies and human clinical trials are required to investigate the clinical applications, mechanisms, and effects of RBAC.


Assuntos
Oryza/química , Óleo de Farelo de Arroz/química , Cogumelos Shiitake/enzimologia , Xilanos/química , Enzimas/química , Humanos , Óleo de Farelo de Arroz/uso terapêutico , Xilanos/uso terapêutico
13.
J Sci Food Agric ; 101(13): 5715-5720, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33682139

RESUMO

BACKGROUND: Rice bran oil is unique among edible oils owing to its rich source of commercially and nutritionally important phytochemicals, such as oryzanol. γ-Oryzanol performs an important role in the stability of rice bran oil. The crude rice bran oil obtained by solvent extraction is subjected to either chemical or physical refining to meet the specifications of edible-grade vegetable oil. These refining processes can cause the compounds present in rice bran oil to degrade. The aim of this study was to evaluate the stability of γ-oryzanol present in chemically and physically refined rice bran oils, when submitted to temperatures of 100, 140, and 180 °C for a period of 1368 h. RESULTS: The chemically refined rice bran oil presented a lower γ-oryzanol content than the physically refined rice bran oil at all heating temperatures. The losses of γ-oryzanol at 100 °C, 140 °C, and 180 °C at the end of the heating periods for the chemically refined oil were 53.47%, 58.48%, and 97.05% respectively, and for the physically refined oil the losses were 38.11%, 53.58%, and 91.11% respectively. CONCLUSION: Based on the results of the time to reduce the oryzanol concentration by 50% and 100%, it is observed that the oil of rice meal refined physically presents greater stability, in the different temperatures studied and over time, than the oil of rice meal refined chemically. Thus, for situations where the oil needs to be subjected to prolonged heating, a temperature of 100 °C is indicated. In this condition, the physically refined oil is better for maintaining a higher concentration of γ-oryzanol. © 2021 Society of Chemical Industry.


Assuntos
Fenilpropionatos/química , Extratos Vegetais/química , Óleo de Farelo de Arroz/química , Estabilidade de Medicamentos , Temperatura Alta , Cinética , Oryza/química
14.
J Oleo Sci ; 70(4): 491-502, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692236

RESUMO

The fatty acid compositions, polymorphism, solid fat content (SFC), thermal properties, microstructure and rheological properties of fat blends of rice bran wax and corn oil (RWC) with low-melting-point fractions of cocoa butter (LFCB) in the range of 20-50% were investigated. With the raising content of LFCB, the hardness, SFC, storage modulus (G') and loss modulus (G'') of blend samples increased. The unsaturated fatty acids of blend samples with different LFCB proportion were in the range of 60.42% to 71.25%. Two kinds of polymorphism were observed in blend samples, which were ß'-Form and ß-Form. During the crystallization process, the rice bran wax was first crystallized, and then induced a part of LFCB formed ß'-Form crystals and another LFCB formed the ß-Form crystals. The results show that the addition of LFCB could improve the plasticity of fat blends and reduce the difference in properties between them and commercial shortening.


Assuntos
Fenômenos Químicos , Óleo de Milho/química , Cristalização , Gorduras na Dieta , Gorduras/química , Óleo de Farelo de Arroz/química , Temperatura de Transição , Ácidos Graxos Insaturados/análise
15.
J Oleo Sci ; 70(4): 503-507, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692239

RESUMO

In this study, we investigated the compositions of vitamin E tocochromanol [tocopherol (Toc) and tocotrienol (T3)] in crude and refined rice bran oil (RBO) produced in Japan and other countries, including Brazil, Thailand, and Vietnam, based on high-performance liquid chromatography analysis. All RBO analyzed contained α-, ß- and γ-Toc and α-, γ- and δ-T3. Japanese crude RBO, although not refined RBO, also contained ß-T3. Furthermore, total Toc contents in both Japanese crude and refined oils were found to be higher than those in the crude and refined RBO from other countries. Total T3 contents in Japanese crude RBO were similar to those in the crude RBO from Brazil and Vietnam. The α-Toc and α-T3 contents in Japanese crude and refined RBO were considerably higher than those in the crude and refined RBO produced in other countries, whereas in contrast, γ-Toc and γ-T3 contents in Japanese crude and refined RBO were lower. Consequently, the ratios of total α-Toc and α-T3 contents to total γ-Toc and γ-T3 contents in Japanese crude and refined RBO (1.75 and 1.91, respectively) were notably higher than those in the crude and refined RBO produced in other countries. Similarly, the ratios of total Toc to total T3 in Japanese crude and refined RBO were higher than those in the crude and refined RBO produced in other countries. These results accordingly indicate that the ratio of total α-Toc and α-T3 contents to γ-Toc and γ-T3 contents could be used as an effective index to discriminate between the RBO produced in Japan and that produced in other countries.


Assuntos
Análise de Alimentos/métodos , Óleo de Farelo de Arroz/química , Tocoferóis/análise , Tocotrienóis/análise , Brasil , Cromatografia Líquida de Alta Pressão , Japão , Óleo de Farelo de Arroz/classificação , Tailândia , Vietnã
16.
J Oleo Sci ; 70(1): 135-143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33431768

RESUMO

The main purpose of this paper is to study the microstructure and macroscopic characteristics of rice bran wax (RBW) oleogels at a cooling rate of 1°C/min and 10°C/min by polarized light microscopy, X-ray diffraction, differential scanning calorimetry, texture analyzer, and micro rheometer. The oleogels of soybean oil were prepared by RBW in concentrations of 5%, 7.5%, 10%, 15% and 20% (wt/wt). The results of this study indicated that the concentration of RBW and cooling rates were affected by the crystal size and spatial distribution of these crystals. For the same RBW concentration, oleogels contained smaller crystals when cooled at 10°C/min compared to 1°C/min. And the oleogels obtained at a rate of 10°C/min exhibited a tighter crystal network, lower melting point, harder texture, and energy storage modulus. These results demonstrated the impact of cooling rate on the rheological behavior, nucleation, and crystallization process.


Assuntos
Óleo de Farelo de Arroz/química , Ceras/química , Varredura Diferencial de Calorimetria , Temperatura Baixa , Cristalização , Microscopia de Polarização , Compostos Orgânicos/química , Tamanho da Partícula , Óleo de Soja/química , Temperatura de Transição , Difração de Raios X
17.
Food Chem ; 337: 127956, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919269

RESUMO

Even though γ-oryzanol (OZ) such as 24-methylenecycloartanyl ferulate (24MCAFA) is abundant in purified rice bran oil, we realized that the oil contained the prospect of two additional novels of OZ species. To identify this, we isolated and analyzed their chemical structures by using HPLC-UV-MS, NMR, and IR. We revealed for the first time that the oil had also contained cyclobranyl ferulate (CBFA) and cyclosadyl ferulate (CSFA) which are likely to be exist due to the isomerism of 24MCAFA under acid condition. OZ profile including CBFA and CSFA was roughly similar between commercial rice bran oils and processed foods containing the oils, suggesting that people might have often consumed CBFA and CSFA from rice bran oils and/or processed foods. Since different OZ species are known to have different functionality, this study opens the chance to explore more the contribution of CBFA and CSFA for human health and wellness.


Assuntos
Fenilpropionatos/química , Óleo de Farelo de Arroz/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Fenilpropionatos/isolamento & purificação
18.
Food Chem ; 337: 127757, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791430

RESUMO

The effects of enzymatic free fatty acid reduction process (EFFARP) on the composition and phytochemicals of dewaxed and degummed rice bran oil (DDRBO) were investigated and compared with the effects observed using internal acyl acceptors. The acid value of DDRBO was effectively decreased from 16.99 mg KOH/g to approximately 0.36 mg KOH/g by EFFARP. EFFARP significantly decreased the moisture content and peroxide value of DDRBO and increased the induction period. The Sn-2 fatty acid comoposition of DDRBO after EFFARP was very reaching the total fatty acid composition. EFFARP significantly increased the triacylglycerol content compared to the control, while the oryzanol content was not obviously affected. The contents of free sterol, and total tocopherol and tocotrienol were increased slightly by EFFARP compared to the control. When conducted under vacuum with added nitrogen, EFFARP shows great application potential in the edible oil industry.


Assuntos
Enzimas/metabolismo , Ácidos Graxos não Esterificados/química , Compostos Fitoquímicos/química , Óleo de Farelo de Arroz/química , Biocatálise , Cinética
19.
Food Chem ; 343: 128431, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131960

RESUMO

In this study, purified rice bran oil (RBO) was used as a lipid matrix model to study the individual and binary antioxidant capacity of the minor constituents (α-tocopherol, γ-oryzanol and phytosterol) added at different concentrations and ratios. The results revealed that concentration influenced on the oxidation stability and scavenging capacity, while ratio mainly affected the type of interaction or the degree of synergism or antagonism. It was important to notice that the antioxidant capacity of α-tocopherol would decrease under high concentration. Besides, the inhibition of phytosterol on α-tocopherol and the formation of hydrogen bond between γ-oryzanol and phytosterol were speculated by the interactions of these minor constituents. This work helps to select efficient combinations for stabilizing the anti-oxidation of nutrient enriched RBO or provide suggestions for moderate retain of minor constituents in RBO.


Assuntos
Antioxidantes/química , Fenilpropionatos/química , Fitosteróis/química , Óleo de Farelo de Arroz/química , alfa-Tocoferol/química , Lipídeos/química , Oxirredução
20.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255657

RESUMO

Pathological neovascularization in the eye is a leading cause of blindness in all age groups from retinopathy of prematurity (ROP) in children to age-related macular degeneration (AMD) in the elderly. Inhibiting neovascularization via antivascular endothelial growth factor (VEGF) drugs has been used for the effective treatment. However, anti-VEGF therapies may cause development of chorioretinal atrophy as they affect a physiological amount of VEGF essential for retinal homeostasis. Furthermore, anti-VEGF therapies are still ineffective in some cases, especially in patients with AMD. Hypoxia-inducible factor (HIF) is a strong regulator of VEGF induction under hypoxic and other stress conditions. Our previous reports have indicated that HIF is associated with pathological retinal neovascularization in murine models of ROP and AMD, and HIF inhibition suppresses neovascularization by reducing an abnormal increase in VEGF expression. Along with this, we attempted to find novel effective HIF inhibitors from natural foods of our daily lives. Food ingredients were screened for prospective HIF inhibitors in ocular cell lines of 661W and ARPE-19, and a murine AMD model was utilized for examining suppressive effects of the ingredients on retinal neovascularization. As a result, rice bran and its component, vitamin B6 showed inhibitory effects on HIF activation and suppressed VEGF mRNA induction under a CoCl2-induced pseudo-hypoxic condition. Dietary supplement of these significantly suppressed retinal neovascularization in the AMD model. These data suggest that rice bran could have promising therapeutic values in the management of pathological ocular neovascularization.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Degeneração Macular/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Vitamina B 6/farmacologia , Idoso , Animais , Cobalto/toxicidade , Modelos Animais de Doenças , Humanos , Hipóxia/induzido quimicamente , Hipóxia/tratamento farmacológico , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Recém-Nascido , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Oryza/química , Retina/efeitos dos fármacos , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Óleo de Farelo de Arroz/química , Óleo de Farelo de Arroz/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Vitamina B 6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...